If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6q^2-5q-6=0
a = 6; b = -5; c = -6;
Δ = b2-4ac
Δ = -52-4·6·(-6)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-13}{2*6}=\frac{-8}{12} =-2/3 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+13}{2*6}=\frac{18}{12} =1+1/2 $
| -2+a/4=14 | | 3t=3+4t | | 6+7k=34 | | 1/6x+5/8=89/120 | | x-150=88-13x | | 2(6m-3)+12m=90 | | 3(2x-5)=9(10-×) | | -5b-10=-3b | | -2x-38=73-5x | | 4x^2–60=4 | | 12xx=10 | | 7+6x-7=3x-2x-5 | | -2x-49=19-4x | | 3=8—w | | p/3+5=14 | | 120+34+13x=180 | | 2x+5(3x-9)=40 | | -27+7x=2x+58 | | 7x+4(x-9)=74 | | 4k+2=3k-10 | | A=x(28-2x) | | 7p+8-3-3p=-12 | | 3x-30=5x+6 | | 30+26=g | | -10g+9g+-7=3 | | 6y-4=5y-3=180 | | 38+2x=84 | | 16y^2+17y+12=0 | | x/3–3x/4–1/4=5/12 | | x-15+3x=13 | | 5^2p+1=5^4 | | 15=3(y-8) |